
Quick start guide

J. E. Camargo-Molina,∗ B. O’Leary,† and W. Porod‡

Institut für Theoretische Physik und Astronomie, Universität Würzburg
Am Hubland, 97074 Wuerzburg

F. Staub§

Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn,
53115 Bonn, Germany

Introduction

Vevacious brings together a variety of public tools. This guide aims to provide a quick start guide to help you
through the installation and basic setup required to evaluate the vacuum structure of a parameter point. Vevacious
should work with any UNIX based system. In this guide we assume that you have installed a C++ compiler such
as gcc, Mathematica (at least version 7), python (at least version 2.7.1) and a fortran compiler such as gfortran. We
also assume that the model you want to study is already implemented in SARAH and Vevacious so that you will
be using one of the model files included with the package. For a detailed guide on installation, possible options and
in particular how to implement your own models (including SUSY spectrum generation) we refer you to Vevacious
manual [1].

Requirements

Before we dive into the details for the installation of Vevacious, you should install the following programs in your
system.

• Numpy and SciPy

• HOM4PS2 [2]

• PyMinuit [3]

• CosmoTransitions [4]

• LHPC

• SARAH [5] (Although not necesary for a first test run, we recommend that you download SARAH as it is necesary
for using Vevacious with models beyond the default models provided (MSSM and NMSSM, allowing stau VEVs
or stau and stop VEVs in addition to the normal Higgs and singlet VEVs).

We recommend that you keep CosmoTransitions, LHPC and SARAH in the same folder together with Vevacious as
it will simplify your setup. From now on we will refer to this folder as $VEVACIOUSPATH. Below you can find some
details about the installation of each of this programs.

∗jose.camargo@physik.uni-wuerzburg.de
†ben.oleary@physik.uni-wuerzburg.de
‡porod@physik.uni-wuerzburg.de
§fnstaub@th.physik.uni-bonn.de

1

Python libraries

The Python environment is needed by Vevacious. Be sure you have installed at least version 2.7.1. The libraries
Numpy and SciPy are needed for CosmoTransitions. You can download and find installation instructions for both of
these here: http://www.scipy.org/install.html

HOM4PS2

http://www.math.nsysu.edu.tw/~leetsung/works/HOM4PS_soft_files/HOM4PS_Linux.htm

HOM4PS2 is an executable and you won’t need to install anything else for it to work.
Extract the contents to $VEVACIOUSPATH/HOM4PS2.Be sure to try some of the examples to check it is working.

PyMinuit

http://code.google.com/p/pyminuit/

You can find detailed instructions for installation step by step here: http://code.google.com/p/pyminuit/wiki/
HowToInstall We strongly recommend that you use PyMinuit with some simple examples before continuing.

CosmoTransitions

http://chasm.uchicago.edu/cosmotransitions/

Just extract the contents of the package in your Vevacious folder. Be sure that Python, Numpy and SciPy are
working properly.

LHPC

http://www.hepforge.org/downloads/lhpc/

LHPC needs only to be extracted to your Vevacious folder and compiled with “make”.

SARAH

http://sarah.hepforge.org

SARAH is a mathematica package and as such needs no installation.

SARAH model file

Vevacious needs to be provided with the tree-level potential, the one-loop effective potential and tadpole equations
for the particular model you want to study. Although it can be done manually, the process is signficantly easier if
you use SARAH to generate a model file for Vevacious including this information. For this you will have to implement
the particular model of your interest (if it is not already implemented). However, for this quick start guide we can
rely on the provided model files and examples. If you are interested in implementing a different model, check section
VIA of [1].For a list of model files included with Vevacious check section VII of [1].

SUSY spectrum Generator for your model

Vevacious will need an SLHA file including the information for the parameter point you want to study. This can
be created with any SUSY spectrum generator (SUSPECT [6], SoftSUSY [7], SPheno ...) if the model of your choice

2

is already implemented. For generating your SLHA file it is not necesary that the implementation assings VEVs to
fields beyond the ones usually considered.

In the case that you want to generate spectrum generating code for your particular model, it is possible to make
SARAH do this and get a specific version of SPheno. This is explained in detail in [1].

However, in a first step to get Vevacious up and running, you can rely on the provided SLHA input files for
particular parameter points included with Vevacious.

Quick Start

Finally, we get to the Vevacious setup. As a first step you need to download Vevacious from:

http://vevacious.hepforge.org/

You should extract the content of the package in $VEVACIOUSPATH/VEVACIOUS.
As mentioned above, you will also need a SLHA file with all the numerical values for your parameter point. We

will assume that you were able to install all the required programs/environments treated in the previous section.

Compliling Vevacious

The Makefile should be edited to have the correct paths to the header files and library file of LHPC (these are
$LHPCPATH/include/ and $LHPCPATH/lib/). LHPC version 0.8.2 or higher is required. After this is done you just
need to run make.

Preparing Vevacious

Once you have installed all the required programs, got yourself a SLHA file for the parameter point and compiled
Vevacious, you are almost done. There are many options that can be passed to Vevacious but the purpose of this
guide is to get you up and running as quickly as possible, so here we will enumerate the necessary options for a suc-
cesful run. This options can be given to Vevacious as command line arguments or can be written as an initialization
XML file
$VEVACIOUSPATH/VEVACIOUS/VevaciousInitialization.xml. If command line options are provided they will over-
ride the XML file.

Command line options:

1. --model_file= $PATHTOMODElFILE/modelfile.vin
Path for the model file you want to use.

2. --slha_file=./SPheno.spc.MSSM
Path of SLHA file containing the numerical values for your parameter point. In this case the file name is
SPheno.spc.MSSM.

3. --ct_path=$VEVACIOUSPATH/CosmoTransitions
Path of CosmoTransitions.

4. --hom4ps2_dir=$VEVACIOUSPATH/HOM4PS2
Path of HOM4PS2.

Equivalent XML options:

1. <model_file> $PATHTOMODElFILE/modelfile.vin </model_file>

2. <slha_file> $VEVACIOUSPATH/VEVACIOUS/SPheno.spc.MSSM </slha_file>

3. <ct_path> $VEVACIOUSPATH/CosmoTransitions </ct_path>

4. <hom4ps2_dir> $VEVACIOUSPATH/HOM4PS2 </hom4ps2_dir>

3

Running Vevacious with provided examples

Once everything is setted up we are ready to run Vevacious. You will need to go to $VEVACIOUSPATH/VEVACIOUS/bin
and run $VEVACIOUSPATH/VEVACIOUS/bin/Vevacious.exe. If you want to run Vevacious outside of the /bin/ di-
rectory or provide your own initialization file, you can specify it with the option --input=/PATH/TO/INIT/FILE. This
should perform the full set of steps to try to find the global minimum of the loop-corrected potential.

As a way for you to check if everything is running correctly, we have included a series of model files, SLHA input
points and example output in the folders VEVACIOUS/MSSM and VEVACIOUS/NMSSM. To use them, just give Vevacious
the location of the input files as explained above and compare with the provided output.

When Vevacious is finished it returns the results twice: (i) as separate file with the default name “MyResult.vout”
and in XML format, (ii) attached to the used SLHA spectrum file. The result file and appended SLHA block should
be self explanatory. For a detailed description of the output information check sec. VID of [1].

We would like to point that we trust the user to feed the appropiate SLHA input file for the chosen model file.
Different model files require different inputs and the correct use of both is crucial for Vevacious. For the included
models, respective SLHA input files are also bundled with Vevacious.

[1] J. Camargo-Molina, B. O’Leary, W. Porod, and F. Staub, (2013), arXiv:1307.1477.
[2] T. L. Lee, T. Y. Li, and C. H. Tsai, Computing 83, 109 (2008).
[3] J. Pivarski, https://code.google.com/p/pyminuit/.
[4] C. L. Wainwright, Comput.Phys.Commun. 183, 2006 (2012), arXiv:1109.4189.
[5] F. Staub, In prep. .
[6] A. Djouadi, J.-L. Kneur, and G. Moultaka, Comput.Phys.Commun. 176, 426 (2007), arXiv:hep-ph/0211331.
[7] B. Allanach, Comput.Phys.Commun. 143, 305 (2002), arXiv:hep-ph/0104145.

4

